Current Issue : April-June Volume : 2024 Issue Number : 2 Articles : 5 Articles
Qingkailing capsules are a classic traditional Chinese medicine prescription with remarkable clinical effects for the treatment of fevers. However, the chemical components of Qingkailing capsules are still unclear. To obtain and characterize the chemical profile of Qingkailing capsules, the present study applied a rapid, accurate, and sensitive method using ultra-high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) to perform a comprehensive chemical characterization of Qingkailing capsules. Leveraging the high separation speed and good separation of UHPLC, the accurate mass data (within 5 ppm) and fragment ions, a total of 276 compounds, including 67 flavonoids and their glycosides, 52 organic acids, 75 terpenoids, 23 steroids, 22 phenylpropanoids, and 37 other compounds, were unambiguously or tentatively identified. This comprehensive analysis of the chemical components of Qingkailing capsules contributes to the quality evaluation and provides a scientific and reasonable basis for further study of prototype components and metabolites in vivo and pharmacological research, ultimately facilitating the advancement of Qingkailing capsules for further development and the therapeutic use of Qingkailing capsules in clinical applications....
A new TLC–densitometric method has been developed for the identification and quantification of paracetamol (PA), propyphenazone (PP) and caffeine (C) in Saridon tablets using the NP-TLC technique combined with densitometry. This method allows for the simultaneous determination of PA, PP, and C in the same sample. Among all the tested chromatographic conditions, the mixture consisting of chloroform + toluene + ethyl acetate + ethanol + acetic acid (18:18:7.5:5.0:0.3, v/v/v/v/v) and a silica gel 60F254 plate proved to be the most effective for the separation of the three tested active pharmaceutical ingredients (APIs) and substances related to paracetamol. The full validation of the proposed NP-TLC method proved that it is specific, precise, accurate, robust and sensitive. The percentage content in relation to the content declared by the manufacturer was for propyphenazone 99.8%, paracetamol 101.6% and caffeine 100.8%, which was in accordance with pharmacopoeial requirements. The results presented indicate the possibility of using the developed method in the routine control of pharmaceutical preparations containing these APIs. The proposed method is economical and more sensitive compared to the previously proposed planar methods for the simultaneous determination of APIs. What is more, the presented method may be an excellent economical alternative when the HPLC method is unavailable for such a determination....
Triclosan (TCS), a synthesized chlorinated phenolic compound, is commonly utilized in consumable products as an antimicrobial agent. TCS has sparked widespread awareness because of its toxicity and possible negative effect on public health in recent years. In this study, a highly sensitive, fast, and cost-effective isocratic reversed-phase high-performance liquid chromatography (RP-HPLC) method coupled with solid-phase extraction for analysis of triclosan in human urine samples was developed. The method utilized methanol and water in a ratio of 90 :10 as the mobile phase on a Phenomenex Luna 3 μm C18(2) 100˚A, 150 × 4.60mm stationary phase, with a runtime of 5 minutes.The method showed good resolution of triclosan in the presence of the sample matrix. Validation of the method was performed according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). Linearity was tested over a range of 0.00625 μg/mL to 6.4 μg/mL, as accuracy recorded a recovery of 89.25%, 91.0%, and 92.75%. Limits of detection (LOD) and quantification (LOQ) were obtained to be 0.0173 μg/mL and 0.0525 μg/ mL, respectively. The method proved to be robust over a temperature range of 26°C, 30°C, and 35°C and a flow rate of 0.5 ml, 1.0 ml, and 1.5 ml. The developed method was employed to detect and quantify triclosan in 153 urine samples, comprising 60 samples from Ibadan, Nigeria, and 93 samples from Kumasi, Ghana. Triclosan was detected in a total of 52 samples with an average content of 0.054588 μg/ml. This method can therefore be used for the routine analysis of triclosan in urine samples....
We describe the development and validation of a new high performance liquid chromatography (HPLC) method for analysis of a combination of the first-line anti-tubercular drugs isoniazid, pyrazinamide, and rifampicin together with clofazimine. This is a unique challenge since clofazimine and rifampicin are relatively highly lipophilic drugs, whereas isoniazid and pyrazinamide are considerably more hydrophilic. Thus, clear separation of peaks and quantification of four individual drugs can present difficulties during the development of an analytical method. Detection was established at two wavelengths—254 nm for isoniazid and pyrazinamide and 320 nm for clofazimine and rifampicin. Gradient elution was employed using 0.1% aqueous formic acid (A) and acetonitrile (B); clear separation of the four drugs was achieved within 10 min. A linear relationship was indicated by a correlation coefficient (r2) of 0.9999 for each anti-tubercular drug, respectively. The limit of detection (LOD) for the individual drugs was 0.70 g/mL (isoniazid), 0.30 g/mL (pyrazinamide), 0.20 g/mL (rifampicin) and 0.20 g/mL (clofazimine). Precision experiments rendered a mean recovery percentage of 101.25% (isoniazid), 98.70% (pyrazinamide), 99.68% (rifampicin) and 97.14% (clofazimine). This HPLC method was validated and is reliable, repeatable, and accurate for the purpose of conducting simultaneous HPLC analyses of the four anti-tubercular drugs....
Favipiravir is a broad-spectrum oral antiviral agent and has been approved for the treatment of COVID-19 infection cases. It inhibits a protein known as RNA polymerase, which transcribes and replicates the viral RNA genome, causing the spread of the infection. The current study aimed to develop and validate a new analytical method utilizing HPLC in accordance with international requirements (ICH and FDA). The chromatographic conditions used to achieve good resolution and reproducibility were a mixture of acetonitrile and 0.1% phosphoric acid buffer in the ratio of 60 : 40 v/v as the mobile phase. The flow rate was 1.0 mL/min, the wavelength (λ) was determined at 250 nm, and a retention time was approximately 3 minutes for favipiravir. The HPLC analysis was performed on the Dionex 300 system equipped with a Phenomenex C8 (250 cm 4.6mm) 5 μm column. The total runtime was 6.0 min. The findings indicated that the method had been validated satisfactorily. Across the concentration range of 0.10–0.75 mg/ml, the calibration curve revealed a linear relationship. The accuracy of the current method was to be 99.2%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.004 and 0.013 ppm, respectively. The standard and sample solution repeatability tests revealed that the procedure was precise and within acceptable ranges. The RSD% for the determination of precision was <2%. The results for robustness and solution stability were within acceptable limits. Finally, the new method provided an excellent result for all analytical method validation parameters and met the acceptance criteria. In addition, the new approach has a short run time and a retention time of around 4 minutes....
Loading....